skip to main content


Search for: All records

Creators/Authors contains: "Portsmore, Merredith"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. N/A (Ed.)
    Background:Engineering's introduction into K–12 classrooms has been purported to support meaningful and inclusive learning environments. However, teachers must contend with dominant discourses embedded in US schooling that justify inequitable distributions of resources. Purpose:Drawing on Gee's notion of discourses, we examine how teachers incorporate language legitimizing socially and culturally constructed values and beliefs. In particular, we focus on the discourse of ability hierarchy—reflecting dominant values of sorting and ranking students based on perceived academic abilities—and the discourse of individual blame—reflecting dominant framings of educational problems as solely the responsibility of individual students or families. We aim to understand how these discourses surface in teachers' reasoning about teaching engineering. Method:We interviewed 15 teachers enrolled in an online graduate program in engineering education. Utilizing critical discourse analysis, we analyzed how teachers drew on discourses of blame and ability hierarchy when reasoning about problems of practice in engineering. Results:Teachers drew on engineering education concepts to reinforce dominant discourses (echoing specific language and preserving given roles) as well as to disrupt (utilizing different language or roles that [implicitly] challenge) dominant discourses. Importantly, teachers could also retool discourses of ability hierarchy (arguing for a more equitable distribution of resources but problematically preserving the values of ranking and sorting students). Conclusions:K–12 schooling's sociohistorical context can shape how teachers make sense of engineering in ways that implicate race, gender, disability, and language, suggesting a need to grapple with how discourses from schooling—and engineering culture—maintain marginalizing environments for students. 
    more » « less
    Free, publicly-accessible full text available November 13, 2024
  2. Abstract Engineering outreach programs often portray outreach educators as role models for youth. It is widely believed that introducing youth, especially girls, to potential engineering role models will broaden participation in engineering majors and careers. Based on interviews with and surveys of fourth- and fifth-grade girls participating in an engineering outreach program, we question whether youth are looking for career role models, and we challenge the assumption that youth will take up an adult as a role model simply because the adult is presented as such. We question what role these ‘‘models’’ play in the minds and lives of youth and argue that it may differ from what we expect. To be clear, we are not arguing that engineering role models are not important or not influential. Rather, we think it is important to gain a better understanding of how youth, particularly girls, view these potential engineering role models, which will allow us to optimize the significance of these adults to the youth participating in engineering outreach. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. Participating in discussions of classroom video can support teachers to attend to student thinking. Central to the success of these discussions is how teachers interpret the activity they are engaged in—how teachers frame what they are doing. In asynchronous online environments, negotiating framing poses challenges, given that interactions are not in real time and often require written text. We present findings from an online course designed to support teachers to frame video discussions as making sense of student thinking. In an engineering pedagogy course designed to emphasize responsiveness to students’ thinking, we documented shifts in teachers’ framing, with teachers more frequently making sense of, rather than evaluating, student thinking later in the course. These findings show that it is possible to design an asynchronous online course to productively engage teachers in video discussions and inform theory development in online teacher education. 
    more » « less
  4. Abstract Background

    Despite the prevalence and potential of K–12 engineering outreach programs, the moment‐to‐moment dynamics of outreach educators' facilitation of engineering learning experiences are understudied. There is a need to identify outreach educators' teaching moves and to explore the implications of these moves.

    Purpose/Hypothesis

    We offer a preliminary framework for characterizing engineering outreach educators' teaching moves in relation to principles of ambitious instruction. This study describes outreach educators' teaching moves and identifies learning opportunities afforded by these moves.

    Design/Method

    Through discourse analysis of video recordings of a university‐led engineering outreach program, we identified teaching moves of novice engineering outreach educators in interaction with elementary student design teams. We considered 18 outreach educators' teaching moves through a lens of ambitious instruction.

    Results

    In small group interactions, outreach educators used ambitious, conservative, and inclusive teaching moves. These novice educators utilized talk moves that centered students' ideas and agency. Ambitious moves included two novel teaching moves: design check‐ins and revoicing tangible manifestations of students' ideas. Ambitious moves offered students opportunities to engage in engineering design. Conservative moves provided opportunities for students to make technical and affective progress, and to experience engineering norms.

    Conclusions

    Our work is formative in describing engineering outreach educators' teaching moves and points to outreach educators' capability in using ambitious moves. Ambitious engineering instruction may be a useful framework for designing engineering outreach to support students' participation and progress in engineering design. Additionally, conservative teaching moves, typically considered constraining, may support productive student affect and engagement in engineering design.

     
    more » « less
  5. As part of an NSF CAREER project [blinded] , [blinded university] developed a one-week chemical engineering summer workshop targeted at middle school girls with the goal of bolstering participation and interest in the field by presenting chemical engineering as a creative and dynamic field. This paper will present a spherification activity which introduces chemical reactions, membranes, resource management, engineering design, and more. Furthermore, links to the full set of activities developed for the week that can be used individually or collectively are provided. In the summer program, students engage in experiments providing simplified background knowledge on foreign material such as chemical reactions, polymer morphology, separations, and thermodynamics. The students then work on hands-on activities to solve engineering design problems using learned information. For the final activity, students collaboratively design a process to scale up a spherification experiment 
    more » « less
  6. As K-12 engineering education becomes more ubiquitous in the U.S, increased attention has been paid to preparing the heterogeneous group of in-service teachers who have taken on the challenge of teaching engineering. Standards have emerged for professional development along with research on teacher learning in engineering that call for teachers to facilitate and support engineering learning environments. Given that many teachers may not have experienced engineering practice calls have been made to engage teaches K-12 teachers in the “doing” of engineering as part of their preparation. However, there is a need for research studying more specific nature of the “doing” and the instructional implications for engaging teachers in “doing” engineering. In general, to date, limited time and constrained resources necessitate that many professional development programs for K-12 teachers to engage participants in the same engineering activities they will enact with their students. While this approach supports teachers’ familiarity with curriculum and ability to anticipate students’ ideas, there is reason to believe that these experiences may not be authentic enough to support teachers in developing a rich understanding of the “doing” of engineering. K-12 teachers are often familiar with the materials and curricular solutions, given their experiences as adults, which means that engaging in the same tasks as their students may not be challenging enough to develop their understandings about engineering. This can then be consequential for their pedagogy: In our prior work, we found that teachers’ linear conceptions of the engineering design process can limit them from recognizing and supporting student engagement in productive design practices. Research on the development of engineering design practices with adults in undergraduate and professional engineering settings has shown significant differences in how adults approach and understand problems. Therefore, we conjectured that engaging teachers in more rigorous engineering challenges designed for adult engineering novices would more readily support their developing rich understandings of the ways in which professional engineers move through the design process. We term this approach meaningful engineering for teachers, and it is informed by work in science education that highlights the importance of learning environments creating a need for learners to develop and engage in disciplinary practices. We explored this approach to teachers’ professional learning experiences in doing engineering in an online graduate program for in-service teachers in engineering education at Tufts University entitled the Teacher Engineering Education Program (teep.tufts.edu). In this exploratory study, we asked: 1. How did teachers respond to engaging in meaningful engineering for teachers in the TEEP program? 2. What did teachers identify as important things they learned about engineering content and pedagogy? This paper focuses on one theme that emerged from teachers’ reflections. Our analysis found that teachers reported that meaningful engineering supported their development of epistemic empathy (“the act of understanding and appreciating someone's cognitive and emotional experience within an epistemic activity”) as a result of their own affective experiences in doing engineering that required significant iteration as well as using novel robotic materials. We consider how epistemic empathy may be an important aspect of teacher learning in K-12 engineering education and the potential implications for designing engineering teacher education. 
    more » « less
  7. Developing a strong engineering identity, or sense of belonging in engineering, is essential to pursuing and persisting in the field. Participating in an engineering outreach program is widely seen as an opportunity for youth to ignite and increase an identity as an engineer. As early as elementary school, youth evaluate their experiences, interests, and successes to make choices about possible futures. Although these early experiences and choices influence future participation in, pursuit of, and persistence in engineering, studies of engineering identity development have concentrated on undergraduate and high school learners. This study examines engineering identity development in elementary school students participating in an engineering education outreach program, expanding understanding of early influences on engineering identity formation. This study asks: How do students’ descriptions of their engineering experiences indicate the influence their experiences have on their engineering identity development? This study is embedded in an NSF-funded study of a university-led engineering education outreach program. In this program, pairs of university students facilitated weekly hour-long engineering design challenges in elementary classrooms throughout the school year. At the end of the academic year, we conducted semi-structured interviews with 76 fourth- and fifth-grade students who had participated in the outreach program. The interviewers asked students to rate their enjoyment of and skills in engineering within the context of the program. Iterative qualitative coding was used to elicit emergent patterns in students’ responses and examine them in the context of the Godwin et al (2016) engineering identity framework, using the constructs of interest, performance/competence, and recognition. Responses were then analyzed based on participants’ gender to understand and identify potential differences in influences on engineering identity development. Findings indicate that student talk around interest tended to be more positive, while student talk around performance/competence tended to be more negative, indicating the type of relationships students had with their interest in engineering compared to their perceived skills in doing engineering. However, within the construct of performance/competence, girls used negative language at a higher frequency than boys. Within this construct-based code, there were categories with large variations in positive and negative talk by gender. These gendered patterns provide insight into the differing ways girls and boys interact with engineering and how they start to develop engineering identities. 
    more » « less
  8. Engineering outreach programs have the potential to significantly influence precollege youth; university-led engineering programs reach approximately 600,000 K-12 students each year in the United States. Despite the prevalence of these outreach programs, little is known about the nature of the discursive interactions between outreach ambassadors and participating youths and the ways in which these interactions support youths’ progress in engineering. Understanding the ways in which outreach ambassadors support youth to learn engineering is critical to furthering the effectiveness of these programs and contributes to greater understanding about how to support engineering in K-12 settings. Often, these programs are facilitated by undergraduate and graduate engineering ambassadors who themselves are developing as engineers and educators. In the context of an engineering outreach program for elementary students, this study examines the teaching moves of outreach ambassadors, adds to the understanding of their teaching moves, and offers preliminary conjectures about the impact of these moves on students. This study asks: What kinds of discursive teaching moves do outreach ambassadors enact when interacting with elementary student design teams?  In the focal outreach program, pairs of university students facilitated engineering design challenges in elementary classrooms for one hour each week throughout the school year. We selectively sampled and analyzed four such sessions in four fourth- and fifth-grade classrooms. We used discourse analysis and a lens of ambitious teaching to classify the teaching moves employed during interactions between ambassadors and small groups of students who were engaged in engineering design challenges. We identified a range of moves, including ambitious, inclusive, and conservative teaching moves, across the four sessions. From class to class, we observed variation in distribution of each category of teaching move and we hypothesize that activity design and outreach ambassador orientations toward teaching influence this variation.   Particularly promising for engineering teaching and learning, we observed ambassadors making bids to elicit student ideas, pressing for evidence-based explanations, and revoicing students’ design ideas. These moves are characteristic of ambitious instruction and have the potential to support students to engage in reflective decision-making and to guide students toward productive, more expert engineering design practices. Our analysis suggests that engineering outreach ambassadors notice and respond to students’ ideas, engaging in ambitious teaching practices which can be expected to support elementary students in making progress in engineering design. This analysis of outreach ambassadors’ discursive interactions with elementary student design teams adds to the growing conversation of ambitious instruction in engineering. 
    more » « less
  9. N/A (Ed.)
    This work-in-progress papers shares the results of the qualitative analysis of the way in which eleven elementary teachers’ understanding and stance toward engineering design changed as a result of engaging in adult-level engineering design projects. Identified themes showed that many teachers had more expansive conceptions of the engineering design process models and steps and that these understanding had connections to their pedagogical thinking about engineering with children. Implications of these findings and themes for teacher professional development standards, professional development design, and interactions between content knowledge and pedagogical knowledge are discussed. 
    more » « less
  10. nterest in science, technology, engineering, and mathematics (STEM) begins as early as elementary and middle school. As youth enter adolescence, they begin to shape their personal identities and start making decisions about who they are and could be in the future. Students form their career aspirations and interests related to STEM in elementary school, long before they choose STEM coursework in high school or college. Much of the literature examines either science or STEM identity and career aspirations without separating out individual sub-disciplines. Therefore, the purpose of this paper is to describe the development of a survey instrument to specifically measure engineering identity and career aspirations in adolescents and preadolescents. When possible, we utilized existing measures of STEM identity and career aspirations, adapting them when necessary to the elementary school level and to fit the engineering context. The instrument was developed within the context of a multi-year, NSF-funded research project examining the dynamics between undergraduate outreach providers and elementary students to understand the impact of the program on students’ engineering identity and career aspirations. Three phases of survey development were conducted that involved 492 elementary students from diverse communities in the United States. Three sets of items were developed and/or adapted throughout the four phases. The first set of items assessed Engineering Identity. Recent research suggests that identity consists of three components: recognition, interest, and performance/competence. Items assessing each of these constructs were included in the survey. The second and third sets of items reflected Career Interests and Aspirations. Because elementary and middle school students often have a limited or nascent awareness of what engineers do or misconceptions about what a job in science or engineering entails, it is problematic to measure their engineering identity or career aspirations by directly asking them whether they want to be a scientist/engineer or by using a checklist of broad career categories. Therefore, similar to other researchers, the second set of items assessed the types of activities that students are interested in doing as part of a future career, including both non-STEM and STEM (general and engineering-specific) activities. These items were created by the research team or adapted from activity lists used in existing research. The third set of items drew from career counseling measures relying on Holland’s Career Codes. We adapted the format of these instruments by asking students to choose the activity they liked the most from a list of six activities that reflected each of the codes rather than responding to their interest about each activity. Preliminary findings for each set of items will be discussed. Results from the survey contribute to our understanding of engineering identities and career aspirations in preadolescent and adolescent youth. However, our instrument has the potential for broader application in non-engineering STEM environments (e.g., computer science) with minor wording changes to reflect the relevant science subject area. More research is needed in determining its usefulness in this capacity. 
    more » « less